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Linear and nonlinear interactions between
a columnar vortex and external turbulence
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(Received 5 September 1997 and in revised form 31 August 1999)

The structure of initially isotropic homogeneous turbulence interacting with a colum-
nar vortex (with circulation Γ and radius σ), idealized both as a solid cylinder and a
hollow core model is analysed using the inhomogeneous form of linear rapid distor-
tion theory (RDT), for flows where the r.m.s. turbulence velocity u0 is small compared
with Γ/σ. The turbulent eddies with scale L are distorted by the mean velocity
gradient and also, over a distance L from the surface of the vortex, by their direct
impingement onto it, whether it is solid or hollow. The distortion of the azimuthal
component of turbulent vorticity by the differential rotation in the mean flow around
the columnar vortex causes the mean-square radial velocity away from the cylinder to
increase as (Γt/2πr2)2(Lx/r)u

2
0, when (r − σ) > Lx, but on the surface of the vortices

((r − σ) < Lx) where 〈u2
r 〉 is reduced, 〈u2

z〉 increases to the same order, while the
other components do not grow. Statistically, while the vorticity field remains asym-
metric, the velocity field of small-scale eddies near the vortex core rapidly becomes
axisymmetric, within a period of two or three revolutions of the columnar vortex.
Calculation of the distortion of small-scale initially random velocity fields shows
how the turbulent eddies, as they are wrapped around the columnar vortex, become
like vortex rings, with similar properties to those computed by Melander & Hussain
(1993) using a fully nonlinear direct numerical simulation. A mechanism is proposed
for how interactions between the external turbulence and the columnar vortex can
lead to non-axisymmetric vortex waves being excited on the vortex and damped
fluctuations in its interior. If the columnar vortex is not significantly distorted by
these linear effects, estimates are made of how nonlinear effects lead to the formation
of axisymmetric turbulent vortices which move as result of their image vorticity (in
addition to the self-induction velocity) at a velocity of order u0tΓ/σ

2 parallel to the
vortex. Even when the circulation (γ) of the turbulent vortices is a small fraction of
Γ , they can excite self-destructive displacements through resonance on a time scale
σ/u0.

1. Introduction
Interactions between intense elongated vortices and surrounding turbulent motions

are often produced artificially in engineering and environmental flows, and they occur
naturally in most homogeneous and sheared turbulent flows. In a mixing layer, the
instability of large-scale spanwise vortices, which are formed after the roll-up of
Kelvin–Helmholtz billows, leads to the production of smaller-scale streamwise braids
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(Hussain 1986). Sarpkaya & Suthon (1991) observed experimentally that U-shaped
vortices are formed on vortex tubes impinging on a free surface. These secondary
structures are supposed to play substantial role in the breakup of the primary structure
and in the three-dimensionalization of the flow field.

A number of basic computational studies have been undertaken on the instabil-
ity of vortices and their interactions with external turbulence. Sreedhar & Ragab
(1994a, b) showed, using compressible large-eddy simulations, that a centrifugally un-
stable columnar vortex was soon surrounded by secondary fine structures akin to
counter-rotating ‘vortex rings’ and that they enhanced the radial exchange of angu-
lar momentum leading to the breakdown of the columnar vortex. Risso, Corjon &
Stoessel (1995) and Spalart & Wray (1996) showed, numerically, how background
atmospheric turbulence can stimulate the ‘Crow instability’ of pairs of trailing vor-
tices and perhaps because of this axisymmetric structures are formed around each
of the trailing vortices. These studies of interactions between vortices and external
turbulence may help to improve modelling and understanding of mechanisms within
turbulent vortices (Saffman 1973).

Melander & Hussian’s (1993) numerical study concentrated on the turbulence
structure around a columnar vortex by direct numerical simulations at moderately
high Reynolds number using a spectral method (1283). They followed the time
evolution of a rectilinear vortex embedded in an initially homogeneous turbulence.
They adjusted the intensity of the background turbulence carefully, so that secondary
fine structures could form around the columnar vortex.

They observed (i) azimuthal alignment of small-scale vorticity, (ii) merger and
axisymmetrization of these vortex rings and (iii) excitation of bending waves on the
columnar vortex. Although the second of these is the result of nonlinear interactions
between fine-scale eddies, the others seem to result from rapid distortions of turbulent
eddies by the differential rotation induced by the columnar vortex. Any turbulent
eddy with a radial component of vorticity is wrapped around the columnar vortex to
form a structure akin to a vortex ring (or a spiral vortex) and induces deformations
of the columnar vortex. The fact that fine structures are highly polarized suggests
the dominance of the linear process, too. A similar mechanism was analysed by
Gilbert (1993) and Bassom & Gilbert (1998) who calculated the wrapping round of
the vorticity field of the external turbulence, but they did not consider the full three-
dimensional vorticity field. A. Wray’s (private communication) numerical simulations
of an isolated vortex in a turbulent flow show how bending can lead to destruction
of the vortex after about 10 rotation times. Keller & Escudier’s (1980) experiments
showed how axisymmetric waves on an air-core vortex in a liquid flow can grow and
break up the vortex.

Our objective in this paper is to integrate the different mechanisms involved in
this complex turbulence–wave problem, using the approximation of rapid distortion
theory (RDT).

RDT has been found to be able to predict statistical and instantaneous turbulence
structure in many kinds of homogeneous and inhomogeneous turbulent flow fields,
even when the rate of distortion is ‘quite’ slow on the time scale of the turbulence,
whenever the leading-order effect is linear in the velocity fluctuation (see, for example,
Townsend 1976; Hunt & Carruthers 1990; Cambon & Scott 1999). In our vortex
problem, three ingredients are present: inhomogeneous distortions of eddies caused
by the differential rotation of the columnar vortex, and their interaction with the
initially non-turbulent flow within the vortex tube and inertial waves on the vortex.
The problem is similar to that of analysing turbulence around a bluff body (Hunt
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Figure 1. Schematic diagram of the problem. (a) Linear: eddy distortion and non-axisymmetric
wave generation. (b) Nonlinear (i): excitation and breakdown of axisymmetric waves. (c) Nonlinear
(ii): turbulence amplification and vortex breakdown.

1973), without the difficulty of the singular straining of the stagnation points, but
with the extra complication of matching the external turbulence to the fluctuations
generated within the vortex. This is similar to matching turbulence to waves generated
in an adjacent stratified layer (Carruthers & Hunt 1986: figure 1 shows a schematic
diagram).

Here we analyse the flow field at very high Reynolds number, when an external field
of homogeneous isotropic turbulence interacts with three idealized types of columnar
vortex.

(i) The solid cylinder model (SC) is the simplest. The core of a columnar vortex
is replaced by a solid cylinder rotating with a constant angular velocity Ω = Γ/2πσ2.
The fluid motion outside the core is irrotational with a circulation Γ . This is the
simplest possible model necessary just to study the effects of differential rotation and
the blocking effect of the cylinder, and is similar to sheared turbulence near a rigid
wall (Lee & Hunt 1989).

(ii) Secondly, we consider a hollow core model (HC) to study the simplest kind
of vortex wave excitation on the vortex. Note that this vortex is stable to any
infinitesimal disturbances. Furthermore, it has only two modes if the axial and
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azimuthal wavenumbers (kz, m) are fixed, which should be contrasted with the fact that
a vortex with continuous radial vorticity distribution (including a top-hat distribution
for Rankine’s combined vortex) is associated with a countably infinite number of
neutrally stable modes. This case provides clear understanding of the mechanisms of
vortex wave generation by the distorted external turbulence.

(iii) In order to study the interactions between the turbulence and waves in the core
of the vortex (which are not included in the previous cases), we also consider a third
interaction where the vortex has the same density as that of the surrounding fluid
and with a constant rotation vorticity in the core (solidly rotating core), i.e. Rankine’s
combined vortex (RCV). Although the essential mechanisms of vortex wave excitation
are similar to that in case (ii), the wave-velocity field is much more complicated in
and near the core of Rankine’s combined vortex.

We formulate RDT for the SC model in § 2 and describe the results in § 3, where
the difference between the vorticity statistics and the velocity statistics is stressed.
The vortex-wave excitation is analysed using linear (RDT) theory for the HC (§ 4)
and RCV models (§ 5). In § 6 we develop an order of magnitude arguments for
nonlinear effects involving the generation of resonant axisymmetric waves. In the last
section, the results are summarized and discussed in terms of recent computations
and experiments.

2. RDT formulation for SC
We analyse the interaction between the steady irrotational flow U (x) around

a columnar vortex of radius σ and circulation Γ , and an initially homogeneous
turbulent velocity field u(x, t) whose initial state at t = 0 is defined as u = uI (x0).
We assume that the characteristic magnitude of the initial turbulent velocity field u0,
defined by the r.m.s value of the initial turbulent velocity field near the vortex so that
u0 = 〈(uI )2〉1/2(r = σ), is much smaller than that of the vortex, i.e. u0 � Γ/σ. The
turbulent velocity field begins to be distorted by the gradients of U (x); as defined
in Hunt & Carruthers (1990), this is a case of rapidly changing turbulence (RCT).
It is also assumed that the Reynolds number (based on the integral scale Lx) is
very large, so that the viscous effects on the energy-containing eddies are negligible.
The rate of distortion of the turbulence is determined by the inhomogeneous and
anisotropic strain rate of the main flow, whose magnitude is Γ/r2, and which produces
substantial geometrical distortion in the time taken for one revolution, i.e. r2/Γ . The
use of linear rapid distortion theory is justifiable for calculating the statistics of the
turbulent velocity field if this time scale is small compared to the time scale on which
the energy-containing eddies change as a result of nonlinear interactions between the
vortices of this scale, i.e. r2/Γ � Lx/u0. This condition can be relaxed if the distortion
reduces the nonlinear terms, as it does in this case (Kevlahan & Hunt 1997).

In this RDT problem the circular geometry of the distortion introduces a new
aspect to the analysis, so that even if a turbulent eddy is small initially compared with
length scale of the mean flow (i.e. Lx � σ), in the later stage of the eddy distortions
it is stretched azimuthally so that it encircles the vortex, i.e. its length in one direction
is comparable with that of the mean flow field. This makes the following analysis
slightly more complicated than that of other RDT problems, where initially small
eddies are assumed to remain small.

The essential choice in the method of RDT for analysing an inhomogeneous ir-
rotational velocity field is between the cumbersome vorticity–streamfunction–velocity
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potential method of Hunt (1973) and the more elegant and economical velocity
method developed by Goldstein (1978). We choose the latter.

The turbulent flow field at subsequent time is separated into rotational and irrota-
tional components, as

u = uR + ∇φ, (1a)

where

uRi (x, t) =
∂x0j

∂xi
uIj (x0), (1b)

∆φ = ∇ · vuR. (1c)

Here the rotational component uR at (x, t) is directly related to the velocity uIj (x0) of
the same fluid element located at x0 at the initial time t = 0, in terms of the inverse
of the material deformation tensor, which in RDT is determined by the velocity field
U (x). Thus for given (x, t), x0 is a function of time. Since, in general, the rotational
velocity field is not solenoidal, the irrotational component (with a corresponding
velocity potential φ in (1a)) is introduced so as to make the whole velocity field
divergence-free and to ensure that the boundary conditions are satisfied. The solution
for uR is the same for all three problems considered here. The initial and boundary
conditions on uR are

uR(x, t) = uI (x) at t = 0 (1d)

and

uR(x, t)→ uI (x) as r/σ →∞, (1e)

for 0 < t < ∞. The above relations (1a, b, c), originally due to Weber (1868), have
a straightforward physical derivations based on Kelvin’s theorem – in terms of the
partial contribution (

∫
u · dr) by fluid elements to the circulation (

∮
u · dr) around

closed loops in the flow (Hunt & Hussain 1991).
Cylindrical coordinates (r, θ, z) are convenient for representing the geometry of the

problem. The z-axis coincides with the vortex axis. In order to use (1b), we first
derive, in these coordinates, the position of a fluid element x at time t in relation to
its initial position x0, using the fact that U (x) = H(r − σ)(Γ/2πr)eθ , where H(r − σ)
is the Heaviside step function. Thence,

r0 = r, θ0 = θ − Γt

2πr2
, z0 = z. (2a, b, c)

Here Γ denotes the circulation of the columnar vortex. The components of the
rotational velocity uR and the vorticity ωR = ∇ ∧ u = ∇ ∧ uR are calculated to be uRr

uRθ

uRz

 (x, t) =

 1
Γt

πr2
0

0 1 0

0 0 1


 uIr

uIθ

uIz

 , (3)

and  ωR
r

ωR
θ

ωR
z

 (x, t) =


1 0 0

− Γt
πr2

1 0

0 0 1


 ωI

r

ωI
θ

ωI
z

 . (4)
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The vorticity could have been derived directly from the linearized vorticity equation
(e.g. as in Hunt 1973), using the material deformation tensor.

Relation (4) shows that the θ-component of vorticity grows in proportion to time,
for any general turbulent velocity field whose vorticity (at t = 0) has non-zero
radial component. It represents the vortex stretching (and the wrapping of a vortex
filament) by the differential rotation, which is the essential physical process that takes
place near the columnar vortex and is discussed in detail in the following. It should
be noted that Fukumoto & Miyazaki (1996) have previously identified the same
physical mechanism whereby vorticity in general grows algebraically along any closed
streamlines (whether circular or not) in a general potential flow field.

3. RDT-calculation for the solid cylinder vortex (SC)
3.1. General solution

We have to solve the Poisson equation (1c) to determine the velocity potential and
thence from (1a, b) the whole velocity field:

∆φ = −∇ · uR, (5a)

∇ · uR =
Γt

πr2

[
1

r

∂uIr
∂θ0

+
∂uIθ
∂r0
− uIθ

r
+
Γt

πr3

∂uIθ
∂θ0

]
. (5b)

Note that the relations (2a, b, c) have been used in deriving (5b). Fourier series and
transforms can be defined to represent variations in the azimuthal θ- and the axial
z-coordinates, because of homogeneity in these directions. The Fourier coefficients,
denoted with a tilde, are defined by the integrals

φ̃(r, t; kz, m) =
1

(2π)2

∫ ∞
−∞

dz

∫ 2π

0

dθφ(r, θ, z, t) e−i(kzz+mθ) (6)

etc. Here, m and kz denote the azimuthal and axial wavenumbers, respectively. The
Poisson equation (1c) for φ̃ in terms of ũi, becomes[
∂2

∂r2
+

1

r

∂

∂r
− m2

r2
− k2

z

]
φ̃ = −

[(
∂

∂r
+

1

r

)
ũr + imũθ + ikzũz

]
(7a)

= − Γt
πr2

exp

(
− imΓt

2πr2

)[
im

r
ũIr +

(
∂

∂r
− 1

r
+

imΓt

πr3

)
ũIθ

]
, (7b)

after substituting (5) and (6) into (7a).
Two boundary conditions are needed to solve (7). It follows from (1e) that

u = ∇φ→ 0 as
r

σ
→∞. (8a)

The condition at the vortex core surface depends on the vortex model we are
considering. For the first case of a solid cylinder at the centre of the vortex, the
normal velocity of the fluctuations vanishes at the core surface, i.e.

∂φ̃

∂r
+ ũRr = 0 at r = σ. (8b)

Other conditions are used in §§ 4 and 5, when the vortex core is a fluid and its
envelope fluctuates in response to pressure fluctuations caused by the turbulence.

The main result of the linear theory calculation is the linear matrix operator MSC
ij
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that relates the Fourier coefficients of the velocity field at time t to those of initial
velocity field uI , i.e. ũr

ũθ
ũz

 (r, t; kz, m) =

∫ ∞
σ

MSC
ij (r, r′, t; kz, m)

 ũIr

ũIθ

ũIz

 (r′; kz, m) dr′. (9)

The velocity field ũi and thence the transfer matrix is given by adding the rotational uR

and irrotational components ∇φ, derived from (3) and (10a, b, c) below respectively.
The contribution to the velocity potential from each initial velocity component ũIj ,
for the SC case is

φ̃ = φ̃SC = ASC (r, t)I|m|(|kz|r) + BSC(r, t)K|m|(|kz|r), (10a)

ASC (r, t) = −
∫ ∞
r

r′K|m|(|kz|r′)RHS dr′, (10b)

BSC (r, t) = − ũRr (σ)

|kz|K ′|m|(|kz|σ)
+
I ′|m|(|Kz|σ)

K ′|m|(|kz|σ)

∫ ∞
σ

r′K|m|(|kz|r′)RHS dr′

−
∫ r

σ

r′I|m|(|kz|r′)RHS dr′. (10c)

Here RHS denotes the contribution to the inhomogeneous terms on the right-hand
side of the Poisson equation (7). Note that φ and therefore the transfer operator
include terms involving an integration in the radial direction. It will be shown later
how this integration is involved in the calculation of the velocity statistics.

Detailed results are given in the Appendix. However, two general points need to
be noted. First, expression (9) involves r′-integration, as mentioned earlier. Secondly,
the radial velocity vanishes at the core surface as was required by (8b). This can be
checked by putting r = σ in (A 1a).

It is interesting to note how the mean motion of the vortex would distort a
perturbation velocity field that is parallel to the vortex. If the initial velocity is a weak
non-axisymmetric jet in the z-direction, and centred at (rj , θj), e.g. u(I) = u(I)

z (r, θ) ez ,
u(I)
z (r, θ) = uj exp [−{(r − rj)2 + r2

j (θ − θj)2}/l2j ], the mean motion distorts the jet flow

by displacing the profile through an angle Γt/2πr2 at each radius. The peak velocity
is not changed, so that

uz(r, θ, t) = uj exp

[
−
{

(r − rj)2 + r2
j

(
θ − θj − Γt

2πr2

)2
}
/l2j

]
.

In the subsequent analysis, variables are non-dimensionalized on the scales of the
mean flow, namely the maximum velocity Γ/2πσ and the vortex radius σ.

3.2. The instantaneous vorticity field

Let us look at a typical realization of the vorticity field produced by RDT calculations,
before inquiring into the statistical characteristics of the flow field, an approach
first introduced by Lee, Kim & Moin (1987), who showed that these fields were
similar to those obtained by full nonlinear simulations. Figure 2(a, b) illustrates the
iso-vorticity surface of the initial and the later (RDT-produced) field, respectively.
The initial homogeneous isotropic turbulence is produced by a direct numerical
simulation of decaying turbulence, using a spectral code (5123) (K. Yamamoto,
private communication). The Reynolds number Reλ is about 160 and we can see
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(a)

Figure 2 (a). For caption see facing page.

several intense vortices (‘worms’) in figure 2(a). Note that the normalized r.m.s.
velocity is 0.82, and the integral length scale is 1.16. Thus the r.m.s. vorticity of the
energy-containing eddies is 0.71. In the intense vortices the vorticity is typically 10
times the value of that in the energy-containing eddies. After a columnar vortex
filament with circulation Γ = π/2 is introduced at the centre of the cubic flow
domain (volume is π3; the vorticity field is distorted, as shown in figure 2b after a
half-revolution t = π (at r = 1

2
). Note that the intense vortices are wrapped around

the vortex filament, similar to those found in the direct numerical simulations by
Melander & Hussain (1993). The vorticity of these wrapped vortices is about three
times their initial value and is about 10 times the strain rate of the mean flow. This
is another example of how linear RDT calculations are a good approximation for
simulating the significant linear processes in distorted turbulence, in this case the
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(b)

Figure 2. Iso-vorticity surfaces at |ω| = ωs, in turbulence around a vortex filament of strength
Γ = π/2 calculated by RDT: (a) initial state t = 0, ωs = 8.85 and (b) after half a revolution t = π,
ωs = 30.65. Note that u0 ≈ 0.8, Lx ≈ 1.2 so ωx ≈ 10u0/Lx at t = 0.

azimuthal alignment of small-scale vorticity. The reason is that the leading nonlinear
terms tend to zero in these situations (Kevlahan & Hunt 1997)).

3.3. Vorticity statistics

We evaluate second-order two-point correlation functions in order to study the
statistical nature of the flow field near the columnar vortex. If the turbulence is
statistically homogeneous in any direction, we can Fourier-decompose these functions.
If, in addition it is isotropic, these particular statistics are defined by the scalar energy
spectrum E(k), namely

ΦIij(k) =
E(k)

4πk2

(
δij − kikj

k2

)
. (11)

As a result of the distortion of the turbulence by the mean flow, it becomes inho-
mogeneous and anisotropic. However, it may remain statistically homogeneous in
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certain directions, in this case the azimuthal and axial directions. Then the correlation
functions can be Fourier-decomposed in these directions, whereas the coefficients have
spatial dependence on the radial coordinate, so that the two-point energy spectrum
tensors Φij(r1, r2, t; kz, m) or the two-point correlations are related by

〈ui(r1, θ1, z1, t)uj(r2, θ2, z2, t)〉
=

∞∑
m=−∞

∫ ∞
−∞

dkΦij(r1, r2, t; kz, m) exp [ikz(z1 − z2) + im(θ1 − θ2)]. (12a)

Note that Φij is related to the Fourier coefficients by the usual orthogonality relation:

〈ũi(r1; k′z, m′)ũj(r2; kz, m)〉 = Φij(r1, r2; kz, m)δ(k′z − kz)δmm′ . (12b)

In order to calculate the distorted turbulence in terms of the initial homogeneous
isotropic turbulence, the two-point energy spectrum tensor of the latter needs to be
expressed in cylindrical coordinates and in terms of the given initial energy spectrum
E(k), i.e.

Φ
I(cyl)
ij =

1

16π2

∫∫∫
lE(
√
l2 + k2

z )

(l2 + k2
z )

2
Tij dl dϕ dθ, (13a)

where

Tij =

 αc − βc αs − βs −2lkz cos (ϕ− θ/2)

αs + βs αc + βc −2lkz sin (ϕ− θ/2)

−2lkz cos (ϕ+ θ/2) −2lkz sin (ϕ+ θ/2) 2l2

 ,
× exp {il[r1 cos (ϕ− θ/2)− r2 cos (ϕ+ θ/2)]− imθ} (13b)

and

αc = (l2 + 2k2
z ) cos θ, αs = (l2 + 2k2

z ) sin θ, βc = l2 cos 2ϕ, βs = l2 sin 2ϕ. (13c–f)

The arguments of each component of these two-point energy spectrum tensors at time
t are (r1, r2, t; kz, m) and those for the initial ‘correlation functions’ are (r1, r2; kz, m).
The above statistical representations might seem unnecessarily cumbersome but they
are necessary to obtain the results derived below.

The two-point vorticity spectrum tensor Ωij can be derived in closed form, since
the vorticity field (4) is given in a closed form. In dimensionless form (where the
minimum mean circuit time around the columnar vortex is 2π),

Ωij = exp

[
imt

(
1

r2
2

− 1

r2
1

)]
Zij , (14a)

where

Zij =



ΩI
rr −2t

r2
2

ΩI
rr + ΩI

rθ ΩI
rz

−2t

r2
1

ΩI
rr + ΩI

θr

4t2

r2
1r

2
2

ΩI
rr − 2t

r2
1

ΩI
rθ − 2t

r2
2

ΩI
θr + ΩI

θθ −2t

r2
1

ΩI
rz + ΩI

θz

ΩI
zr −2t

r2
2

ΩI
zr + ΩI

zθ ΩI
zz


. (14b)

Note that Ωθθ grows as t2 for any m, corresponding to the algebraic growth of
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the azimuthal vorticity component. Also, the vorticity statistics do not approach an
axisymmetric state. In fact the radial variations in phase play an important role when
the velocity correlation functions Φij are evaluated. They bring about cancellation in
the radial integration through rapid ‘phase mixing’ for large |m|t for m 6= 0; these do
not contribute to the variance which is dominated by m = 0.

The one-dimensional enstrophy spectrum is dominated by Ωθθ at large time. Sum-
ming over the angular modes m leads to a simple relation between the enstrophy kz
spectrum and the initial energy spectrum:

EΩ(r; kz) =

∞∑
m=−∞

Ωθθ(r, r, t; kz, m) =

(
1

4
+
t2

r4

)∫ ∞
kz

[
k2
z

η
E(η) + E(η)

]
dη. (15)

First, this shows that the influence of the columnar vortex reaches out to a distortion
radius rd ≈ √t. The azimuthal component of vorticity is built up in the region r 6 rd
with EΩ(r; kz) growing in proportion to t2 and decaying rapidly, as r−4, in the radial
direction. The one-dimensional enstrophy spectrum at large kz depends on the initial
energy spectrum. As with other turbulent flows distorted by irrotational velocity fields,
the form of the spectrum at high wavenumber (whether an exponential or algebraic
decay) is not changed by the distortion. In particular EΩ(r; kz) is proportional to k2−p

z

if the initial energy spectrum E(η) obeys a power law η−p.

3.4. Velocity statistics

The two-point velocity energy spectrum tensors are evaluated using the linear operator
in (9) connecting the velocity field at the time t to the initial homogeneous isotropic
turbulence:

Φij =

∫ ∞
σ

dr′1

∫ ∞
σ

dr′2
3∑
α=1

3∑
β=1

Miα M
∗
jβ Φ

I
αβ. (16)

In general these integrals with respect to the radius and therefore the energy spec-
tra and variances cannot be expressed in closed forms. We performed the double
integration numerically for an initial Gaussian energy spectrum (following Townsend
1976):

E(η) = E0

(
η

k0

)4

exp

[
−
(
η

k0

)2
]
. (17)

This corresponds to a distribution of typical isolated eddies as well as mean vorticity.
Here, k0 is the normalized wavenumber of the energy-containing eddies. In our
calculation we take k0 = 5, which implies that the turbulence length scale Lx, is
about quarter of the radius of the vortex. Since the effect of ‘blocking’ of the radial
components affects the energy-containing turbulence for a distance from the vortex of
order Lx, in this case this means that the effects are only significant for r 6 1.25. In our
numerical calculation the energy level E0 is set to 1 (thus u0 ≈ 1

2
= ( 1

3

∫ ∞
0
E(η) dη)1/2),

although its value does not matter at all in the linear RDT analysis. The factor
(η/k0)

4 in front of the Gaussian, corresponding to the asymptotic form for the
larger-scale eddies, enables the integration with respect to l in (13) to be carried
out analytically. The other integrations in (13) are evaluated numerically using the
trapezoidal summation rule with uniform discretization (N = 200) of the interval
[0, 2π]. Similarly, the double integration with respect to the radius in (16) is evaluated
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Figure 3. Time evolution of the spectrum function of the axial velocity: solid line, Φzz (1, 1, t; 2, 0)
(axisymmetric m = 0, kz = 2); broken line, Φzz (1, 1, t; 4, 1) (non-axisymmetric m = 1, kz = 4)
(normalized by the peak vortex velocity Γ/2πσ2).

numerically using the trapezoidal summation rule with uniform discretization (N =
200) of the interval [1, r∞ = 2 + 20/|kz|]. The upper endpoint is selected so that the
values of the integrand are less than 10−15 there. The radial numerical integration
for large |m|t becomes inaccurate because of the rapidly oscillating phase factors
mentioned in the previous subsection. The following results are correct, at least, to
two significant figures.

Figure 3 shows the typical time evolution of the correlation function Φzz (1, 1, t; kz, m)
of axial velocity at the core surface r = 1. The solid line represents the axisymmetric
component m = 0, kz = 2 and the broken line denotes the asymmetric component
m=1, kz = 4. Both components grow as t2, initially, at small time but only the
axisymmetric one continues its growth at later time. In contrast, the growth of the
asymmetric component saturates after two revolutions of the columnar vortex. This
saturation results from the radial integration of a rapidly oscillating phase factor
exp (2imt/r2) as mentioned earlier. Then, quicker saturation occurs for larger |m| and
for smaller r. The velocity field near the core approaches a statistically axisymmetric
state within two or three revolutions of the columnar vortex.

Since the numerical integration of the integrals is lengthy, it is not practical to
scan a wide parameter range. Rather we concentrate on the asymptotic forms of the
velocity spectra for small eddies with large |kz|, and their physical interpretation. For
large |kz|, the contribution to the r′-integral is localized near r′ = r, since the modified
Bessel function decays exponentially. This leads to an analytic form of the integrals,
with the slow variables taken as their value at r′ = r, as in the asymptotic integrals
of Hunt (1984) and Hunt & Graham (1978).

At the core surface r = 1, the r′-integration is performed only for r′ > r, which
yields some differences between the asymptotic forms at r = 1 and those at r > 1
and |kz| → ∞. The non-zero spectra at r = 1 are Φθθ , Φzz , Φθz , Φzθ , and others vanish
because the radial velocity vanishes at r = 1 on the SC. Their asymptotic forms are
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given as, for r = 1,

Φθθ =
k2
z

k2
z + 4m2t2

[
m2

k2
z

ΦIrr +
im

|kz|Φ
I
rθ − im

|kz|Φ
I
θr + ΦIθθ

]
, (18a)

Φzz =
k2
z

k2
z + 4m2t2

ΦIrr +
4k2

z t
2

k2
z + 4m2t2

ΦIθθ + ΦIzz +
2k2

z t

k2
z + 4m2t2

[ΦIrθ + ΦIθr]

+
ikz

|kz| − 2imt
ΦIrz − ikz

|kz|+ 2imt
ΦIzr +

2ikzt

|kz| − 2imt
ΦIθz − 2ikzt

|kz|+ 2imt
ΦIzθ,

(18b)

Φθz =
kzm

k2
z + 4m2t2

ΦIrr − 2ikz|kz|t
k2
z + 4m2t2

ΦIθθ − ikz|kz|
k2
z + 4m2t2

ΦIθr

+
2kzmt

k2
z + 4m2t2

ΦIrθ +
|kz|

|kz|+ 2imt
ΦIθz +

im

|kz| − 2imt
ΦIrz, (18c)

Φzθ =
kzm

k2
z + 4m2t2

ΦIrr +
2ikz|kz|t
k2
z + 4m2t2

ΦIθθ +
ikz|kz|

k2
z + 4m2t2

ΦIrθ

+
2kzmt

k2
z + 4m2t2

ΦIθr − |kz|
|kz| − 2imt

ΦIzθ − im

|kz|+ 2imt
ΦIzr. (18d)

The argument of the initial correlation functions is (1, 1; kz, m). We can see that the
terms 4m2t2 and 2imt in the denominators bring about saturation for non-zero m. The
time ts when the saturation occurs is estimated to be ts ≈ |kz|/2|m|, being smaller for
smaller |kz| and for larger |m|. Of course, such estimates fail for ‘too small’ |kz|, where
the asymptotic forms are less accurate. As the time tends to infinity, Φθθ , Φθz , Φzθ for
m 6= 0 decay to zero and Φzz tends to a finite limiting value, namely

Φzz ≈ ΦIzz (1, 1; kz, m) +
k2
z

m2
ΦIθθ(1, 1; kz, m)− kz

m
[ΦIθz(1, 1; kz, m) + ΦIzθ(1, 1; kz, m)]. (19)

Actually, the above asymptotic form at large time holds for any kz (not restricted to
large |kz|). Figure 4(a) show the axial correlation function Φzz (1, 1, t; kz, 1) (obtained
by numerical integration) as a function of |kz| at several times (t = π, 2π, 4π, 6π),
with the limiting value at large time (bold solid line) from (19). We can see that the
numerically integrated results (in the energy-containing range) overshoot (at t = 2π,
4π) the asymptotic value and approach it from above at large time. The axisymmetric
correlation functions are

Φθθ = ΦIθθ(1, 1; kz, 0) (remains constant at any time), (20a)

Φzz → 4t2ΦIθθ(1, 1; kz, 0), (20b)

Φθz → −2it sgn (kz)Φ
I
θθ(1, 1; kz, 0), (20c)

Φzθ → 2it sgn (kz)Φ
I
θθ(1, 1; kz, 0). (20d)

Note that the axisymmetric correlations, which dominate for large time, are de-
termined by the initial azimuthal correlation function ΦIθθ(1, 1; kz, 0). We compare
the numerical results in figure 4(b) for the axisymmetric axial correlation function
Φzz (1, 1; kz, 0) with the asymptotic estimate t = 4π, which is valid only for large |kz|.

Similarly, we can evaluate the asymptotic forms for large |kz| away from the vortex
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Figure 4. Spectrum of the axial velocity spectrum function: (a) non-axisymmetric Φzz (1, 1, t; kz, 1)
and (b) axisymmetric Φzz (1, 1, t; kz, 0). The solid line in each figure denotes the asymptotic estimate
for large |kz | (at large time in (a) and at t = 4π in (b)).
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core surface, where 1/(r − 1)� |kz|:

Φrr =
k4
z

(k2
z + 4m2t2/r6)2

ΦIrr +
4k4

z t
2

r4(k2
z + 4m2t2/r6)2

ΦIθθ

+
2k4

z t

r2(k2
z + 4m2t2/r6)2

[ΦIrθ + ΦIθr], (21a)

Φθθ =
4m4t2

r8(k2
z + 4m2t2/r6)2

ΦIrr +
k4
z

(k2
z + 4m2t2/r6)2

ΦIθθ

− 2k2
zm

2t

r4(k2
z + 4m2t2/r6)2

[ΦIrθ + ΦIθr], (21b)

Φzz =
4k2

zm
2t2

r6(k2
z + 4m2t2/r6)2

ΦIrr +
16k2

zm
2t4

r10(k2
z + 4m2t2/r6)2

ΦIθθ + ΦIzz

+
8k2

zm
2t3

r8(k2
z + 4m2t2/r6)2

[ΦIrθ + ΦIθr]− 4kzmt
2

r5(k2
z + 4m2t2/r6)

[ΦIzθ + ΦIθz]

− 2kzmt

r3(k2
z + 4m2t2/r6)

[ΦIzr + ΦIrz]. (21c)

The term 4m2t2/r6 in the denominators brings about saturation for m 6= 0, again,
when the time tends to infinity. The saturation occurs more slowly for larger r, since
the saturation time ts is factored by r3. The terms proportional to the time t are
caused by the ‘initial’ growth of the vorticity of disturbances in an irrotational mean
strain (Batchelor & Proudman 1954). As in other distorted flows, the distortion of the
wavenumbers at later time reduces the rate of growth. The only non-zero correlation
function for m 6= 0 at large t is Φzz (r, r; kz, m), which asymptotes to

ΦIzz (r, r; kz, m) +
k2
z r

2

m2
ΦIθθ(r, r; kz, m)− kzr

m
[ΦIθz(r, r; kz, m) + ΦIzθ(r, r; kz, m)]. (22)

The axisymmetric correlation functions behave as

Φrr → 4t2

r4
ΦIθθ(r, r; kz, 0), (23a)

Φθθ = ΦIθθ(r, r; kz, 0) (remains constant), (23b)

Φzz = ΦIzz (r, r; kz, 0) (remains constant). (23c)

Note that (22) is valid for small |kz|, too, and we recover the previous formula (19) at
the core surface by putting r = 1. Away from the vortex core most of the turbulent
energy is concentrated in the radial velocity component. However, at the rigid core
surface this component has to be zero. The irrotational interactions caused by the
rigid surface convert this blocking effect into motions parallel to the surface. Since
azimuthal fluctuations (for m = 0) remain constant, these parallel components are
in the axial direction. We illustrate the radial dependence of Φrr (r, r, 6π; 6, 0) and
Φzz (r, r, 6π; 6, 0) near the core surface using numerical results in figure 5. The axial
velocity dominates near the core surface but the radial velocity dominates away from
the vortex core. This agrees with the results of the direct numerical simulations by
Melander & Hussain (1993) and the large-eddy simulations by Sreedhar & Ragab
(1994a, b).

The physical mechanism of the dominance of the radial velocity component over
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Figure 5. Radial dependence of the axisymmetric (m = 0) velocity correlation functions
Φrr (r, r, 6π; 6, 0) (radial velocity) and Φzz (r, r, 6π; 6, 0) (axial velocity).

the axial velocity component is clear. The result of the distortion increases ωθ and
also reduces the length scale of radial variations, as the eddies are wrapped around
the vortices like spirals. Note that as ωθ = ∂ur/∂z − ∂uz/∂r, the relation between ωθ
and ur is ωθ ≈ ∂ur/∂z. This picture is in accordance with the large-eddy simulations
by Sreedhar & Ragab (1994a, figure 12).

As the spirals are wrapped more tightly, the linear growth of the azimuthal
vorticity component tends to be saturated. However local nonlinear effects begin to
be significant because the vortices are not circular but rather are disc like (Kida &
Tanaka 1994). These tend to roll up from the edges near the columnar vortex and
vortex rings tend to be formed. Within these motions nonlinear effects are small,
but their interactions with the rigid or flexible vortices of the mean motion are
nonlinear. The effect of vortex waves on the distribution of turbulence energy will be
of considerable interest too, which is the subject of the next section.

Before finishing this section, we comment on the energy spectrum briefly. The
one-dimensional energy spectrum

2E(kz) =
∑
m

(Φrr + Φθθ + Φzz ) (24)

is evaluated by summing over all the azimuthal modes (m). Note that the most
energetic component is Φzz near the core surface and it is Φrr away from the core
surface. At large time the dominant contribution comes from the axisymmetric part
and the asymptotic estimate is given in terms of the initial energy spectrum tensor by
the formula

2E(kz)→ 4t2

r4
ΦIθθ(r, r; kz, 0). (25a)

We see that the energy grows like t2 and that it decays rapidly in the radial direction.
The decay rate is steeper than r−4 due to the presence of the r-dependence of
ΦIθθ(r, r; kz, 0). Similarly, the spectrum decay (kz-dependence) is slightly steeper than
that of the initial homogeneous spectrum. Figure 6(a) shows ΦIθθ(r, r; kz, 0) as a
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Figure 6. (a) Asymptotic one-dimensional energy spectrum ΦIθθ(r, r; kz, 0) and (b) asymptotic

turbulence intensity Q(r) ≡ ∫ ∞−∞ ΦIθθ(r, r; kz, 0) dkz at large time.

function of r and kz . It is clear that our calculated spectra do not reproduce the
form of the spectrum, where E ∝ k−12

z , observed by Melander & Hussain (1993).
This is inevitable because the initial spectrum was assumed to be exponential and
in irrotational straining the form of the high-wavenumber spectrum is unchanged.
However the errors are caused by the linear theory not modelling the nonlinear
deformations of the interactions (inverse energy cascade) between azimuthally aligned
vortices.

The variations in the turbulence energy can be derived by integrating (24) with
respect to kz . For large distortions (i.e. Γt/2πr2 → ∞) the asymptotic result for the
spectrum of (17) is

〈|u|2〉 → 4t2

r4

∫ ∞
−∞
ΦIθθ(r, r; kz, 0) dkz =

4t2

r4
Q(r) ≈ 1.02t2

r5
. (25b)

The result (25b) can be generalized to arbitrary length scales Lx (provided Lx is small
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compared to the length of the vortex – which is assumed to be infinite); it is found
that in dimensional terms for (r − σ) > Lx or r/Lx � 1,

〈u2
r 〉 ≈

(
Γt

2πr2

)2(
Lx

r

)
u2

0. (25c)

Note that, where surface blocking occurs, i.e. for (r − σ) < Lx and σ/Lx � 1, 〈u2
r 〉

is reduced but 〈u2
z〉 has about the same magnitude as 〈u2

r 〉 away from the surface and
is given by (25c). If the turbulence scale is much larger than that of the vortex (i.e.
Lx � σ), the vorticity is not affected by the straining and for a Gaussian spectrum
such as (17)

〈u2
z〉 ≈ u2

0

[
4

(
Γt

2πσ2

)2(
σ

Lx

)2
]
, (25d)

when r ≈ σ.
These asymptotic results from RDT differ from those in other flows, because here

the variation with time of the turbulence energy is proportional to the energy of
the vorticity. Usually 〈|u|2〉 grows more slowly with time than 〈|ω|2〉 because of the
distortion of the wavenumbers by the strain. In this case kr and kz are not affected,
while ωθ increases.

Essentially (25b) shows that

ur(� uθ, uz) ≈ 〈uθ(t = 0)〉θ
(
Γt

2πr2

)
, (25e)

where 〈 〉θ indicates the azimuthally averaged value. For any sinusoidal function, e.g.
f = f0 sin θ exp (ik ·x), 〈f〉θ ∝ f0/(kr)

1/2 as kr →∞, and 〈f〉θ ∝ kr when kr → 0. Thus
the turbulence is determined by the initial azimuthally averaged fluctuation, and the
largest velocity component is radial, except near the vortex boundary where, because
of blocking, the axial velocity component is larger. The asymptotic result (25c) is
consistent with the result in figure 6(b), because the variation of the function Q(r)
with respect to r is approximately 1/r. For small-scale turbulence, its energy around
the vortex decays like r−5 in the radial direction, grows like t2 in time and increases
with length scale. The result in (25b) is only relevant when |kz| � 1; for larger eddies
(or smaller |kz|) the numerical factor 1.02 is too large, as was demonstrated in figure
4(b) where the asymptotic result for the axisymmetric correlation functions exceeded
the numerically evaluated values for finite values of |kz|.

4. Vortex-wave excitation: hollow core model
It is well known that a columnar vortex is a waveguide capable of supporting

various kinds of inertial wave. Kelvin was the first who noticed this fact and he
determined the dispersion relation of vortex waves on Rankine’s combined vortex
(Kelvin 1880). These are similar to internal gravity waves. In a stably stratified
fluid (and/or surface waves at density discontinuity), the restoring force is buoyancy.
Here, the centrifugal force plays the role of restoring force instead of gravity and
inertial ‘vortex waves’ are excited. Continuous vorticity distributions correspond to
continuous density stratification, for both of which there is an infinite number of
modes for each set of axial and azimuthal wavenumbers.

We first consider the hollow core vortex (HC), by replacing the solid cylinder of
the SC-model vortex with fluid of zero density. In this case there are only two wave
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modes (travelling upward and downward along the vortex axis) for each set of axial
and azimuthal wavenumbers, just like the surface gravity waves which can propagate
in the direction of the wave vector and in the opposite direction. First, we formulate
the RDT problem for HC and investigate the mechanism of vortex wave generation
driven by the external turbulence.

The problem for HC differs from that for SC only in one point, i.e. the boundary
condition at the core surface r = σ which is required in solving the Poisson equation
(7) for the velocity potential. The condition of vanishing normal velocity (8b) is now
replaced by the kinematic condition that the core surface moves with the fluid, and
by the dynamical condition that the pressure is continuous across the interface:(

∂

∂t
+ imΩ

)
F̃ =

∂φ̃

∂r
+ ũRr , (26a)

Γ 2

4π2σ3
F̃ +

p̃

ρ
= 0,

p̃

ρ
=

i

kz

(
∂

∂t
+ imΩ

)
(ikzφ̃+ w̃R). (26b, c)

Here, F̃ denotes the Fourier component of the surface deformation and Ω = Γ/2πσ2

is the angular velocity at the core surface. We arrive at the boundary condition for
the potential, if we eliminate the surface deformation:(

∂

∂t
+ imΩ

)2(
φ̃− i

kz
w̃R
)

= Ω2σ

(
∂φ̃

∂r
+ ũRr

)
. (27)

This condition represents a harmonic oscillator with forcing terms and indicates
the excitation of surface waves on the vortex. In the absence of the forcing terms
(proportional to ũRr and w̃R), the solution for the potential that decays to zero at
infinity is proportional to the modified Bessel function K|m|(|kz|r) of the second kind;
thence the dispersion relation for the vortex wave is obtained:(ω

Ω

)2

=
(ω − mΩ)2

Ω2
=
|kz|σK ′|m|(|kz|σ)

k|m|(|kz|σ)
. (28)

The frequency ω (with an overbar) is the frequency in the inertial coordinates, whereas
ω denotes the frequency in the coordinates rotating around the vortex axis with the
angular velocity Ω, and they are of the same order of magnitude.

The solution of the Poisson equation (7b) is given by adding a correction term to
the potential for the SC:

φ̃HC = φ̃SC + ÃVW (t)
K|m|(|kz|r)
K|m|(|kz|σ)

, (29a)

ÃVW (t) =
1

|kz|σK ′|m|(|kz|σ)

{∫ ∞
σ

[
ω2teiωpt

ω2
p − ω2

+
iω

2

(
eiωpt − eiωt

(ω − ωp)2
− eiωpt − e−iωt

(ω + ωp)2

)
−sinωt

ω
+ teiωpt

]
e−imΩt imΓ

πr′2
K|m|(|kz|r′)ũIθ(r′) dr′

−
∫ ∞
σ

[
ω2teiωpt

ω2
p − ω2

+
iω

2

(
eiωpt − eiωt

(ω − ωp)2
− eiωpt − e−iωt

(ω + ωp)2

)

−sinωt

ω
+ teiωpt

]
e−imΩt |kz|Γ

πr′2
K ′|m|(|kz|r′)ũIθ(r′) dr′

}
, (29b)



368 T. Miyazaki and J. C. R. Hunt

(a)
0.001

0

0 10 20

t

Urr

0.6

0.4

0.2

0
0 10 20

t

Uzz

(b)

Figure 7. (a) Spectrum of radial velocity Φrr (1, 1, t; 4, 1) and (b) of axial velocity Φzz (1, 1, t; 4, 1)
on the surface of the vortex for the hollow core vortex model (HC: broken lines). The solid line
represents the solid cylinder model (SC).

with ωp ≡ m(1−1/r′2). The ‘apparent’ resonance at ω = ωp is not a real one, since the
numerator vanishes there, too. These formulae are same as those of Ffowcs Williams
& O’Shea (1970) in the limit of c→∞, k → 0.

Two initial conditions are required to determine the amplitude coefficient ÃVW (t).
The above solution (29b) is obtained when the vortex starts from a state of rest, i.e.
at t = 0

ÃVW =
dÃVW

dt
= 0. (30a, b)

These conditions imply that the forcing by the turbulence determines the initial core
surface deformation F̃(t = 0) = F̃0 (cf. (26b, c)) and that any ‘free’ oscillations can
be ignored. As in (9) the solution for HC can once again be expressed in terms of a
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Figure 8. Spectra of the excess core deformation Φ∆F = 〈(F̃ − F̃0)2〉 (solid lines) and the total core

deformation ΦF = 〈F̃2〉 (broken lines) when the initial core displacement is zero, i.e. F̃0 = 0. Here
the wavenumbers are (kz, m) = (2, 1) and (4,1).

modified linear operator: ũr
ũθ
ũz

 (r, t; kz, m) =

∫ ∞
σ

MHC
ij (r, r′, t; kz, m)

 ũIr

ũIθ

ũIz

 (r′; kz, m) dr′. (31)

It is a striking result that no forced axisymmetric wave is excited by the linear
interaction between the external turbulence and the hollow core, despite the fact that
only the axisymmetric velocity spectra grow in time. This follows from the formula
(29b) for ÃVW (t), which vanishes if we put m = 0 (ωp = 0). This apparent paradox is
resolved later, when we examine asymmetric vortex wave generation.

Figure 7(a) shows the spectrum of the radial velocity at typical wavenumbers
Φrr (1, 1, t; 4, 1) at the surface of the hollow core as a function of time. This component
is only produced by the vortex waves, since the radial velocity is zero at r = 1 on
the solid core vortex (SC). Note that it does not grow with time but oscillates with a
small amplitude. For large |kz|, the asymptotic form can be derived explicitly as

Φrr =
64m2

ω4

[
k2
z − 2 cosωt(k2

z − 12m2t2)

(k2
z + 4m2t2)3

+
cos2 ωt

k4
z

]
×(m2ΦIrr + im|kz|ΦIrθ − im|kz|ΦIθr + k2

zΦ
I
θθ). (32)

At large time, it asymptotes to

Φrr → 64m4 cos2 ωt

ω4k4
z

(
ΦIrr +

i|kz|
m
ΦIrθ − i|kz|

m
ΦIθr +

k2
z

m2
ΦIθθ

)
. (33)

Thus the radial correlation remains small (of the order of its initial value). Figure
7(b) compares the time evolution of the spectra of the axial components for the
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hollow core vortices, namely ΦHC
zz (1, 1, t; 4, 1) and ΦSC

zz (1, 1, t; 4, 1). The difference is
very small, in much the same way that the energy-containing parts of the spectra of
the components of velocity parallel to a rigid surface are not much affected by it
except at the smaller scales (Hunt 1984). The hollow core surface movements have
almost no effect on the velocity field away from the core surface since it decays
exponentially as r increases.

Figure 8 shows the time evolution of the spectra for the ‘excess’ deformation
Φ∆F = 〈(F̃ − F̃0)

2〉, where F̃0 denotes the initial deformation and of the deformation
ΦF = 〈F̃ ′2〉 starting from the more natural initial conditions ÃVW = F̃ ′ = 0. The
spectra saturate to almost the same value after two or three revolutions of the
columnar vortex in both cases, although the initial growth is proportional to t4 for
the solid line and to t2 for the broken line. The asymptotic expression for large |kz| is

Φ∆F ≈
[

1

ω4(k2
z + 4m2t2)2

+
1

ω4k4
z

+
16m2 sin2 ωt

ω6k6
z

− 2(k2
z − 4m2t2)

ω4(k2
z + 4m2t2)2k2

z

− 32m2t sinωt

ω5(k2
z + 4m2t2)2k2

z

](
ΦIrr +

i|kz|
m
ΦIrθ − i|kz|

m
ΦIθr +

k2
z

m2
ΦIθθ

)
. (34)

At large time this expression becomes

Φ∆F → 1

ω4k4
z

(
1 +

16m2sin2ωt

k2
z

)(
ΦIrr +

i|kz|
m
ΦIrθ − i|kz|

m
ΦIθr +

k2
z

m2
ΦIθθ

)
. (35)

Thus, asymptotically, the amplitude oscillates about a constant value, which is larger
for smaller |kz| and for smaller |m|. Although the asymptotic form is less accurate
for small |kz|, the results obtained by numerically evaluated integrals support this
conclusion. Also, it is consistent with the direct numerical simulations by Melander
& Hussain (1993). They observed long bending waves (not axisymmetric waves) on
the vortex core, even though the statistics of the velocity field around the core rapidly
become axisymmetric.

We note the close relation between the correlation of the surface deformation and
the azimuthal velocity correlation, for their asymptotic forms have the common factor

ΦIrr +
i|kz|
m
ΦIrθ − i|kz|

m
ΦIθr +

k2
z

m2
ΦIθθ. (36)

This is not surprising because the pressure defect at linear order is proportional to
the azimuthal turbulent velocity. The spectrum of the azimuthal velocity decays as
time tends to infinity, which means the forcing vanishes at large time and the total
energy input to vortex waves remains finite. Then the amplitude of vortex waves
cannot grow without limit.

The reason why no axisymmetric vortex wave is excited in the linear approximation
is given by a similar argument. The axisymmetric azimuthal velocity remains at its
initial value, since the azimuthal component of the rotational velocity uR(x, t) (3) is
time-independent. Also, no axisymmetric correction comes from the potential flow
component ∇φ. Then, no forced axisymmetric vortex wave is generated, because the
initial pressure defect associated with the initial turbulent velocity field is balanced by
the initial deformation F̃0. This fact is not sensitive to the choice of the vortex model
in the RDT formulation, as we see in the next section.
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5. Rankine’s combined vortex
So far we have studied the vortex–turbulence interaction using RDT, for two

idealized models of the vortex, one with a solid core (SC) and the other with a hollow
core (HC). Although these models usefully capture the essence of the phenomena
(and the hollow core model might have direct relevance to experiments such as those
of Keller & Escudier 1980), they do not account for all the significant interactions
between the external turbulence and the motion within a columnar fluid vortex.

The simplest realistic model of a columnar fluid vortex is Rankine’s combined vortex
(RCV), defined as a solidly rotating vortex core and a potential flow (with circulation
Γ ) surrounding the core. The RDT problem, as before, consists of calculating the
change to an initially defined perturbation velocity field uI (x). Now it is also necessary
to solve the linearized Euler’s equation of motion for u(c)(x, t) inside the vortex core
which is driven by the velocity fluctuations at r = σ. It is assumed that there are no
initial rotational fluctuations in the core so that ∇∧ u(c)(x, t) = 0 at t = 0. It is known
that in a uniform angular velocity a homogeneous random velocity field at linear
order is simply rotated and not amplified (Cambon & Jacquin 1989), but because,
in this inhomogeneous flow, they are matched to the external flow at the surface of
the vortex, they are amplified as a result of amplification of the external turbulence.
This leads to a growing solution for u(c)(x, t) and the internal fluctuations affect the
potential φ outside the core. It is, however, not possible to derive a simple condition
(like (27) in the case of HC), since there is now an infinite number of vortex-wave
modes for each set of (kz , m). We must resort to a more systematic method, such
as the Laplace transformation in time. These modes, after some straightforward (but
lengthy) algebraic manipulations, are derived systematically in terms of the Laplace-
transformed velocity potential:

φ̃RCV = φ̃SC + ÃRCV (t)
K|m|(|kz|r)
K|m|(|kz|σ)

, r > σ, (37a)

ÂRCV (S) =

∫ ∞
0

ÃRCV (t)exp (−st) dt, (37b)

ÂRCV (S) =
(s+ im)2[BJ ′|m|(β)/J|m|(β)] + 2im(s+ im)

(s+ im)2βJ ′|m|(β)

|kz|K ′|m|(|Kz|)J|m|(β)
+

2im(s+ im)

|kz|K ′|m|(|kz|)
− (s+ im)2 + 4

K|m|(|kz|)
×
{∫ ∞

1

2im/r′2

(s+ im/r′2)2
K|m|(|kz|r′)ũIr (r′) dr′

−
∫ ∞

1

2|kz|/r′
(s+ im/r′2)2

K ′|m|(|kz|r′)ũIθ(r′) dr′
}

(37c)

with

β = |kz|
√
−1− 4

(s+ im)2
.

As before, in our convenient normalization Γ = 2π, σ = 1. The contributions to the
inverse Laplace transformation, which is an integration in the complex s-plane, come
from those around the poles and those along the branch cuts of β. The integrations
along the branch cuts, however, give no contribution in this case. The poles are
classified into two types. The first type is the zeros of the denominator outside the r′-
integrals, which corresponds to free vortex waves. Actually, there is an infinite number
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of discrete poles (Kelvin 1880). For the forced oscillations we consider here, the free
vortex waves can be eliminated. Then, the double pole at s = −im/r′2 indicates the
possibility of large-amplitude excitation of forced waves on the Rankine vortex, as
on the hollow core vortex.

However, our analysis has shown that there is no significant forcing of axisymmetric
disturbances by the turbulence (i.e. m = 0). Therefore there can be no significant
excitation of axisymmetric waves as a result of the linear distortion. Only asymmetric
waves of finite amplitude are generated, as in the case of HC. The numerics in this
case are more subtle because of the accidental coincidence of the double pole of
the forced oscillation with some of the poles corresponding to free oscillations, since
the double pole moves along the imaginary axis from −im to the origin during the
r′-integration. There was a similar triple pole in the numerical integration for HC;
its contribution to the amplitude of the vortex wave (with |m| > 2) has not been
determined accurately. However, its effect is small and we consider that the wave
generation phenomena for RCV are qualitatively the same to those for HC.

6. Discussion of waves on the vortex
The linear RDT predicts the azimuthal alignment of the fine-scale structure of the

external turbulence and the formation of randomly oriented vortex rings around the
columnar vortex, but no axisymmetric pressure fluctuations. As a consequence the
linear analylsis implies that no axisymmetric waves are excited. In this section we
consider how, if the columnar vortices are not significantly distorted by the asymmetric
linear pressure fluctuations, weakly nonlinear effects lead to axisymmetric pressure
fluctuations, in order to estimate how resonances could destroy vortices. There are
several steps in reaching this result, which are all found in previously published papers.

First, these intense vortex rings (even if not exactly axisymmetric) tend to travel
along the vortex axis, as a result of their own induction. The sweeping action of large-
scale turbulence could also add another random element to this translation as occurs
at density interfaces (Carruthers & Hunt 1986). In this problem the ring velocity,
itself, is proportional to u0 and therefore is not taken into account in the linear
RDT analysis. Secondly, these vortex rings may interact with each other. Melander
& Hussain (1993) noted the occurrence of such interactions in their direct numerical
simulations and observed how they led to vortex rings enlarging through merger and
thence an inverse energy cascade to large scales. Thirdly, a second-order pressure
perturbation produced by (and moving with) the turbulent vortices can excite waves
on the central vortex. If the velocity of a turbulent vortex is close to the group velocity
of a certain vortex wave, it must excite resonantly a large-amplitude vortex wave.
Finally, this process may cease either when turbulent vortex rings break up, e.g. due to
unstable asymmetric disturbances, or when axisymmetric vortex oscillaitons become
large enough to destroy it. We discuss these nonlinear effects for the idealized problem
of a hollow core vortex with a circular vortex ring surrounding it and conclude with
an order of magnitude estimate for the breakup time. Marshall’s (1997) analysis
reveals many of the features of these nonlinear interactions but he does not come to
our general conclusion.

The velocity C of a thin vortex ring is the sum of two components: CS , the
self-induction velocity, and CI the velocity induced by the image of the ring in the
columnar vortex, i.e.

C = CS + CI, (38a)



Interactions between a columnar vortex and external turbulence 373

2

1

1 2 3

Cr
c

R/r

Figure 9. Velocity C of a vortex ring: solid line, a/σ = 10−2 and broken line, a/σ = 10−3.

where

CS =
γ

4πR
log

(
1 + cos δθ
1− cos δθ

)
, (38b)

CI =
γR

π

∫ ∞
0

kI1(kσ)

K1(kσ)
K1(kR)K0(kR) dk. (38c)

Here, γ is the circulation of the vortex ring and R (> σ) is the ring radius. The first
term denotes the self-induction, where δθ is the cut-off factor. For a solidly rotating
core, it is given by

δθ =
a

4R
e3/4, (39)

with a being the assumed filament core radius (see, for example, Saffman 1992). The
velocity induced by the image (38c) is calculated up to second order, assuming that
the vortex ring travels parallel to (or coaxially with) a cylindrical hollow core vortex
of fixed radius σ. The deformation of a hollow core surface occurs at second order
and, then, the correction to the image-induced velocity appears at third order. Figure
9 shows the vortex ring velocity C as a function of the ring radius R for two values of
the cut-off parameter δθ corresponding to a/σ = 10−2, 10−3. The velocity, especially
that induced by the image vortex, increases rapidly as R decreases (tends to 1 from
above).

The radial deformation F(z) of the hollow core up to second order is obtained by
evaluating the pressure defect at second order, as

F(z) =
2π2σ3

Γ 2
(C2 −W 2), (40a)

W = −C +
γR

2

∫ ∞
0

ke−kzJ1(kR)J0(kσ) dk

+
γR

π

∫ ∞
0

kI1(kσ)

K1(kσ)
K1(kR)K0(kσ) cos kz dk. (40b)
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Figure 10. Second-order axisymmetric core deformation induced by a travelling vortex ring with
circulation γ, in relation to the circulation of the vortex Γ : solid line, R/σ = 2.0 and broken line,
R/σ = 1.5.

Note that the maximum value F(0) ≈ γ2σ/Γ 2. We show in figure 10, as a function of
z, the vortex core deformation (expansion) induced by vortex rings of radius R = 1.5
and 2 with the cut-off a/σ = 10−2. The striking feature of this result is that, even if
the circulation of the vortex ring is about 1

5
of the columnar vortex, the deformation

may be as large as the core radius!
The kind of strong interaction can also be understood by comparing the pressure

defect induced by the vortex ring at radius R, which is O(ρ(γ/(R − σ))2), with the
pressure field [O(ρ(Γ/R)2)] produced by the columnar vortex. This condition is also
satisfied if the group velocity Cg = dω/ dkz ≈ Γ/σ of the wave on the vortex is
close to the propagation velocity Cγ of the vortex ring, where Cγ ≈ γ/(R − σ) for
R > (σ + Lx) with Lx being the scale of the vortex. This result indicates that smaller
vortices or eddies resonate first. Note that the circulation γ = Γ (R − σ)tu0/σ

2 of any
induced vortex ring made up of distorted azimuthal vortex lines grows in proportion
to time, although that of an exactly circular ring remains constant. Thus for eddies
where L ≈ σ resonance is expected to occur after a time of O(σ/u0) ≈ L/u0. Here we
assume that the length scale Lx of the turbulence is of the order of the vortex radius
σ. If Lx is much larger than σ, the pressure perturbation occurs at a larger scale and
the interaction is weaker.

When the external turbulence has a larger length scale than that of the vortex
(i.e. Lx � σ), its interaction can be estimated by considering eddies in the Kolmogorov
inertial-range spectrum. Then from the above results the eddy that undergoes max-
imum amplification has a length scale (l) comparable with σ. Its initial energy is
of order ε2σ2/3 and after the distortion it is (Γt/2πσ2)2ε2/3σ2/3. Here ε is a rate of
dissipation per unit mass. Now let ted be the eddy deformation time over which the
external turbulent velocity is amplified to such a level that it is comparable with the
velocity Γ/2πσ in the vortex and therefore can significantly deform the vortex. It fol-
lows that (Γted/2πσ

2)(ε1/3σ1/3) ≈ Γ/2πσ implies that ted ≈ σ2/3ε−1/3 ≈ (σ/L)2/3L/u0.
Note that this deformation time is much less than the eddy time scale L/u0 of the
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large-scale turbulence, but is independent of Γ provided that, initially, Γ/2πσ is
greater than u0.

7. Summary
We have investigated, using linear theory (RDT), the distortion of the eddy structure

and of the statistics of an external turbulent velocity field when it interacts with a
columnar vortex. The turbulent eddies are stretched by the differential rotation to
form structures like vortex rings (or spirals) wrapping around the columnar vortex,
rapidly, within two or three revolutions. The statistical nature of the velocity field
becomes axisymmetric, whereas that of the vorticity field remains asymmetric. The
axial velocity component dominates near the vortex core surface and the radial
velocity component dominates away from the core, which enhances the momentum
and scalar transport in the radial direction. For small-scale turbulence, its energy
decays radially like r−5, grows in proportion to t2, and increases with the length scale
of the turbulence.

We have argued that nonlinear effects only change slightly the nature of these
distorted flows, because the velocity field is approximately axisymmetric. However,
initially the only significant pressure fluctuations on the main vortex are non-
axisymmetric. Later the nonlinear effects reinforce the tendency of the vortices to
become axisymmetric, and induce these induced vortices to move parallel to the
columnar vortex. This leads to axisymmetric pressure fluctuations which can res-
onate with the natural waves of the columnar vortex. Time-dependent numerical
experiments of Melander & Hussain (1993) and A. Wray (private communication)
confirm the tendency of a strong vortex introduced into a turbulent flow to be bent
by non-axisymmetric waves. Recent laboratory experiments (A. Srdic, private com-
munication) on a fixed vortex produced by a rotating rod in grid turbulence show,
by contrast, how a permanent undistorted vortex has sufficient time to distort the
external turbulence into energetic random ring vortices. Their effect was apparent
in the experiments by their movement along the columnar vortex and the energetic
radial ejection of fluid from it.
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Appendix A
In this Appendix, the actual forms of the velocity field calculated by RDT are

given:

M̃11(r, r
′; kz, m) = exp

(
− imΓt

2πr2

)[
δ(r′ − r)− K ′|m|(|kz|r)

K ′|m|(|kz|r′)
δ(r′ − σ)

]

+|kz|I ′|m|(|kz|r) imΓt

πr′2
exp

(
− imΓt

2πr′2

)
K|m|(|kz|r′)H(r′ − r)
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−|kz|K ′|m|(|kz|r)
I ′|m|(|kz|σ)

K ′|m|(|kz|σ)

imΓt

πr′2
exp

(
− imΓt

2πr′2

)
K|m|(|kz|r′)

+|kz|K ′|m|(|kz|r) imΓt

πr′2
exp

(
− imΓt

2πr′2

)
I|m|(|kz|r′)H(r − r′),

(A 1a)

M̃12(r, r
′; kz, m) = −|kz|I ′|m|(|kz|r) |kz|Γtπr′

exp

(
− imΓt

2πr′2

)
K ′|m|(|kz|r′)H(r′ − r)

+|kz|K ′|m|(|kz|r)
I ′|m|(|kz|σ)

K ′|m|(|kz|σ)

|kz|Γt
πr′

exp

(
− imΓt

2πr′2

)
K ′|m|(|kz|r′)

−|kz|K ′|m|(|kz|r) |kz|Γtπr′
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(
− imΓt

2πr′2

)
I ′|m|(|kz|r′)H(r − r′),

(A 1b)

M̃13(r, r
′; kz, m) = 0, (A 1c)

M̃21(r, r
′; kz, m) = − exp

(
− imΓt

2πr2

)
imK|m|(|kz|r)
r|kz|K ′|m|(|kz|r′)

δ(r′ − σ)

+
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(
− imΓt

2πr′2
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− im

r
K|m|(|kz|r)

I ′|m|(|kz|σ)

K ′|m|(|kz|σ)

imΓt

πr′2
exp

(
− imΓt

2πr′2

)
K|m|(|kz|r′)

+
im

r
K|m|(|kz|r) imΓt

πr′2
exp

(
− imΓt

2πr′2

)
I|m|(|kz|r′)H(r − r′),

(A 2a)

M̃22(r, r
′; kz, m) = exp
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(A 2b)

M̃23(r, r
′; kz, m) = 0, (A 2c)

M̃31(r, r
′;Kz, m) = − exp

(
− imΓt

2πr2

)
ikzK|m|(|kz|r)
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−ikzK|m|(|kz|r)
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(A 3a)
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M̃33(r, r
′;Kz, m) = exp

(
− imΓt

2πr2

)
δ(r′ − r). (A 3c)
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